
Sorting

We have seen several sorting algorithms, but they all take time O(n2)
to sort a list of size n. A better algorithm is based on the simple fact
that if we have two sorted lists A and B whose sizes together add up
to n then we can merge them into a single list C of size n by only doing
n comparisons: at each step we compare the next elements of A and
B and put the smaller one into C.

This gives us the MergeSort algorithm: at each step find the
midpoint of the list. We recursively sort the first half of the list and
recursively sort the second half of the list, then we merge these two
into one sorted list.

The downside of MergeSort is that it takes extra memory: we can't
merge the two halves in place without the danger of overwriting
some elements that haven't yet been merged, so we merge the two
halves into a new temporary list and then copy the temporary list
over the original halves. This makes for a lot of extra copying, but it
still makes fpr a much faster algorith,.

Consider the following picture, which shows the first two stages of
breaking K into pieces:

L

First
half L

Second
half L

First
quarter

L

Second
quarter

L

Third
quarter

L

Fourth
quarter

L

L

First
half L

Second
half L

First
quarter

L

Second
quarter

L

Third
quarter

L

Fourth
quarter

L

If n is the length of L, it takes n comparisons to merge the bottom
row into the middle row, and n comparisons to merge the middle
row into L.

In fact, if we made the full diagram for MergeSort of L, it would have
log(n) levels; each level would take n comparisons to merge into the
level above. Altogether, MergeSort(L) does O(n*log(n))
comparisons, where n is the length of L. For large values of n that is
a big improvement over SelectioSort(L), which does O(n2)
comparisons.

There are sorting algorithms that are similar to MergeSort only they
avoid all of the extra copying that comes from merging into a
temporary list. All of these run in time O(n*log(n)). In CS 151 we
show that you can't do any better: any algorithm that sorts by
comparing data must have a worst-case running time of at least
O(n*log(n))

